
Vol.:(0123456789)1 3

Journal of Ambient Intelligence and Humanized Computing 
https://doi.org/10.1007/s12652-018-0924-y

ORIGINAL RESEARCH

A hybrid crow search algorithm based on rough searching scheme 
for solving engineering optimization problems

Aboul Ella Hassanien1 · Rizk M. Rizk‑Allah2 · Mohamed Elhoseny3 

Received: 3 April 2018 / Accepted: 20 June 2018 
© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract
In this paper, a hybrid intelligent algorithm, named rough crow search algorithm (RCSA), by combining crow search 
algorithm (CSA) with rough searching scheme (RSS) is presented for solving engineering optimization problems. RCSA 
integrates the merits of the CSA and RSS to intensify the search in the promising region where the global solution resides. 
In terms of robustness and efficiency of the available optimization algorithms, some algorithms may not be in a position 
to specify the global optimal solution precisely but can rather specify them in a ‘rough sense’. Thus, the main reason for 
incorporating the RSS is handling the impreciseness and roughness of the available information about the global optimal, 
particularly for the problems with high dimensionality. By upper and lower approximations of the RST, the promising region 
becomes under siege. Therefore this can accelerate the optimum seeking operation and achieve the global optimum with a low 
computational cost. The proposed RCSA algorithm is validated on 30 benchmark problems of IEEE CEC 2005, IEEE CEC 
2010 and 4 engineering design problems. The obtained results by RCSA are compared with different algorithms from the 
literature. The comparisons demonstrate that the RCSA outperform the other algorithms for almost all benchmark problems 
in terms of solution quality based on the results of statistical measures and Wilcoxon signed ranks test.

Keywords  Crow search algorithm · Rough set theory · Nonlinear programming problems

1  Introduction

Large-scale nonlinear programming arises in a wide variety 
of scientific and engineering applications including struc-
tural optimization, engineering design, very large-scale cell 
layout design, economics, resource allocation and many 
other applications (Bartholomew-Biggs 2008; Rao 2009). 
In most cases there are many optimization problems that 
involve some attributes, such as high dimensionality and 
multimodality, the solution of these problems are usually a 

complex task. Moreover, in many instances, complex opti-
mization problems present peaks, channels and/or valleys 
which make traditional deterministic methods inefficient to 
find the global solutions.

The traditional optimization methods (TOMs) (Rao 2009) 
such as Newton and steepest-descent methods always rely on 
the restrictions of gradient information regarding the objec-
tive function and the goodness of the initial solution. These 
methods can perform well for small scale problems. Chal-
lenges can be appeared when coping with complex tasks that 
are characterized by the non-linearity, high dimensionality, 
multimodality, prohibited regions induced by constraints 
and large search areas. Handling such complex tasks using 
TOMs is almost impossible or requires notable computa-
tional efforts (Xiaohui et al. 2017; Rizk-Allah et al. 2018a, 
b).

Alternatively, the metaheuristic algorithms (MAs) have 
exhibited promising performance when dealing with com-
plex tasks that are extremely nonlinear, high dimension and 
multimodal (Rizk-Allah 2018; Tharwat et al. 2018; Yang 
2008). The MAs have some features which include the capa-
bility of searching within a wide search area for the global 
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or near global solutions, they established based on embraces 
probabilistic transition rules that preserve the diversity, no 
reliance on the derivatives of objective function, and they 
are independent on the problems nature, thus they have flex-
ibility to be applicable to a great assortment of complex 
tasks. However, by the means of the NFL Theorem (No Free 
Lunch) (Yang 2008), no meta-heuristic algorithm can be 
suited to deal with all optimization problems. So develop-
ing a new algorithm or modified algorithms undoubtedly is 
a true challenge.

Crow search algorithm (CSA) is an efficient meta-heu-
ristic algorithm that was developed by Askarzadeh (Alireza 
2016) for solving global optimization problems. It was 
inspired by the intelligent behavior of crows in nature. Crows 
are greedy birds since they follow each other to obtain bet-
ter sources of food. They have very strong memory to store 
and retrieve food across seasons which are superior to other 
birds. The process of finding food source hidden by a crow 
is not an easy task. The crow has an intelligent ruse that is 
the crow tries to cheat another crow by going to another 
position of the environment, if it finds another one following 
it. The CSA has been applied to some real-world problems 
such as feature selection (Sayed et al. 2017), fractional opti-
mization (Rizk-Allah et al. 2018a, b), and nonlinear opti-
mization problems (Mohit et al. 2017). However as a new 
algorithm, CSA acquires some disadvantages. The first is 
that the updating mechanism employs unidirectional search 
which deteriorates the diversity of solutions and can lead 
to the stuck in local solution. The second is that no sieging 
strategy regarding the promising region is utilized and this 
may lead to the running without improvement in the quality 
of solution.

This paper presents a hybrid intelligent algorithm, named 
rough crow search algorithm (RCSA) for solving IEEE CEC 
2005, IEEE CEC 2010 benchmark problems and engineering 
design problems. The proposed methodology operates in two 
phases: in the first phase, an improved version of the CSA 
is introduced based on two modifications namely, changing 
the crow flight length dynamically as well as searching in 
the opposite direction. However, the effective performance 
of CSA in solving optimization problems, it cannot perform 
well for all test problems. Thus, the second phase incorpo-
rates the RSS which is inspired by Pawlak’s rough set theory 
to avoid the trapping in the local optimum. Meanwhile this 
phase breaks new regions in the search space to improve the 
exploration search. Furthermore, these regions are shrunken 
with the iteration to obtain precise optimal solution. There-
fore, the embedding of the RSS phase with the CSA is a 
prudent way to prevent the premature convergence of the 
swarm and avoid the local solutions.

The rest of the paper is arranged as follows. Section 2 
introduces the related work of this study. Section 3 provides 
the basics of crow search algorithm and rough set theory. 

Section 4 presents the proposed rough crow search algo-
rithm in details. In Sect. 5, the results and discussions are 
provided, and finally the conclusions and future work are 
presented in Sect. 6.

2 � Related work

This section provides the preliminaries of the nonlinear 
programming problem (NLPP). Also, the mechanisms of 
metaheuristic techniques and their challenges are discussed. 
Eventually, the motivation and main contribution of the pro-
posed work are showed.

2.1 � Problem formulation

A nonlinear programming problem (NLPP) is stated as fol-
lows (Rao 2009):

where f (�) is the objective function, � = (x1, x2,… , xn) is 
a vector of n decision variables from some universe Ω , Ω 
contains all possible � that can be used to satisfy an evalu-
ation of f (�) and its constraints, and LBi and UBi represent 
the lower bound and the upper bound for decision variable 
xi, respectively. There are q inequality constraints gi(�) and 
(m − q) equality constraints hj(�).

The method for finding the global optimum of any func-
tion (may not be unique) is referred to as global optimiza-
tion. In general, the global minimum of a single-objective 
problem is presented in Definition 1 (Rao 2009):

Definition 1  (The global minimum) Given a func-
tion f ∶ Ω ⊆ ℝ

n
→ R, Ω ≠ 𝜙, for � ∈ Ω the value 

f ∗ ≜ f (�∗) > −∞ is called a global minimum if and only if:

where �∗ is by definition the global minimum solution, f (.) is 
the objective function, ℝn is an n-dimensional real space and 
the set Ω is the feasible region of � . The goal of determining 
the global minimum solution is called the global optimiza-
tion problem for a single-objective problem.

(1)
MinΩ f (�) = f (x1, x2,… , xn)

Subject to: � ∈ Ω,

(2)
Ω = {�| gj(�) ≤ 0, j = 1,… , q, hj(�) = 0, j = q + 1,

… ,m,LBi ≤ xi ≤ UBi, i = 1,… , n}

(3)∀ � ∈ Ω ∶ f (�∗) ≤ f (�)
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2.2 � Literature review

Researchers have been relied on metaheuristics algorithms 
(Yang 2008) because of their superior abilities over the tra-
ditional optimization methods, especially for complicated 
optimization problems. The main reason behind their supe-
rior abilities is caused by the following features: flexibility, 
simplicity, derivative free approaches and ability to avoid 
local optima. They can be divided into two main categories: 
evolutionary computational algorithms (ECAs) and swarm 
optimization algorithms (SOAs). ECAs mimic the biologi-
cal evolutionary mechanism to solve optimization problems. 
The most well-known paradigms of evolutionary algorithms 
contain genetic algorithm (GA) (Rubén et al. 2015), and 
differential evolution (DE) (Xiang and Wang 2015). SOAs 
generally imitate the collective behavior of animals such 
as birds, ants and bees. Particle swarm optimization (PSO) 
(Chijun et al. 2016), ant colony optimization (ACO) (Mousa 
et al. 2011) and firefly algorithm (FA) (Rizk-Allah et al. 
2013) are the most famous paradigms of the SOAs. These 
algorithms outperform the traditional numerical methods on 
providing better solutions for some difficult and complicated 
real-world optimization problems (Rizk-Allah et al. 2017a, 
b, 2018a, b; Elhoseny et al. 2018a; Metawa et al. 2017).

According to NFL Theorem (No Free Lunch) (Yang 
2008), no metaheuristic algorithm is suited appropriately for 
solving all optimization problems, where it can achieve very 
promising results for a set of problems, and can show poor 
performance in a set of different problems. Therefore the 
integrations with some strategies are established for obtain-
ing effective performance. In this regard, we integrate rough 
set theory (RST) that was proposed by Pawlak (1982) with 
the crow search algorithm (CSA). RST presents an exten-
sion of the classical set theory and differ from the fuzzy 
set theory in its independence on any prior knowledge. It 
expresses the vagueness not by the means of member rela-
tionship but by employing the boundary region of a set. RST 
relies on replacing any vague concept, namely a subset of 
the universe, by two crisp concepts, which are called the 
upper approximation and the lower approximation of the 
vague concept. The upper one represents the maximal crisp 
set while the lower one represents the minimal crisp set of 
the vague concept. The boundary region is the difference 
between the upper and the lower approximations. Naturally, 
the presence of ill posed data in real-world problems is 
inevitable, so applying the RST methodology is a vital step. 
Since its inception by Pawlak (1982), it has attracted the 
attention of scientists and researchers in many fields such as 
feature selection (Shu and Shen 2014), knowledge discovery 
(Li et al. 2009), and attribute reduction (Xiuyi et al. 2016) 
and among others (Jie et al. 2017; Rizk-Allah 2016).

2.3 � Motivation and contribution of the study

The theoretical researches on the optimization algorithms 
in the literature have been mainly concerned with two 
directions: improving the current techniques and hybrid-
izing different algorithms. The goal of these directions 
is mainly to improve the diversity, prevent the premature 
convergence and increase the convergence rate. However, 
despite the successful test of these algorithms on some 
optimization problems and their high convergence speeds, 
theses algorithms suffer from premature convergence and 
weak diversity, particularly when handling highly nonlin-
ear optimization problems and/or the optimum solution 
resides in a tiny subset of the search space. Further, the 
conflicting between precision and computing time makes 
these methods often yield an unsatisfactory solution that is 
characterized by lack of precision and slow convergence. 
These disadvantages are the main motivations of this work.

This paper is motivated by several features that distin-
guish the proposed methodology over the existing in the 
literatures. First, modified variant of the crow search algo-
rithm (CSA) based on opposite direction search is intro-
duced to preserve the exploration ability. Second, the inte-
gration between the rough searching scheme (RSS) that 
is inspired by Pawlak’s rough set theory and crow search 
algorithm (CSA) to solve global optimization problems 
which have not been studied yet. Third, the rough search-
ing scheme (RSS)-based evolved and shrunken regions 
can over overcome the drawbacks of many algorithms. 
Lastly, solving large scale optimization problems have not 
received adequate attention yet. Hence solving these prob-
lems to optimality undoubtedly becomes a true challenge.

The main contributions of this study are as follows:

1.	 RCSA is proposed for solving large scale optimization 
tasks which integrates the merits of two phases namely: 
crow search algorithm (CSA) and rough searching 
scheme (RSS).

2.	 CSA phase exhibits a dynamic flight length to adjust the 
tendency of approaching the optimal solution.

3.	 An opposition-based learning is adopted for updating 
the solution to improve the diversity of solutions.

4.	 RSS is proposed to siege the promising regions and then 
this can refine the quality of solution and avoiding the 
local solution.

5.	 The effectiveness of RCSA is investigated and validated 
through comprehensive experiments and comparisons 
for solving IEEE CEC 2005, IEEE CEC 2010 bench-
mark problems and engineering design problems.
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3 � Methods and materials

This section describes the basics of crow search algorithm 
(CSA) and the preliminaries of rough set theory.

3.1 � Crow search algorithm (CSA)

Crow search algorithm (CSA) is a novel metaheuristic algo-
rithm that is proposed by Askarzadeh (Alireza 2016) for 
solving optimization problems. It is inspired by the clever-
ness of crows in finding food sources. The classical CSA 
consists of three consecutive phases. Firstly, the position 
of hiding place of each crow is created randomly and the 
memory of each crow is initialized with this position as the 
best experience. Secondly, crow evaluates the quality of its 
position according to the objective function. Finally, crow 
randomly selects one of the flock crows and follows it to 
discover the position of the foods hidden by this crow. If 
the found position of the food is tasty, the crow updates its 
position. Otherwise, the crow stays in the current position 
and does not move to the generated position. The procedure 
of the CSA is summarized as follows (Alireza 2016).

Step 1: Initialize a swarm of crows within the n dimen-
sional search space, where the algorithm assigns a random 
vector �i = (xi,1, xi,2,… , xi,n) for the ith crow, i = 1, 2,… ,N. 
Furthermore, each crow of the swarm is characterized by 
its memory (i.e., initially, the memory of each crow is filled 
with the initial position, �i = (mi,1,mi,2,… ,mi,n), where the 
crows have no experience about the food sources).

Step 2: Each crow is evaluated according to the quality of 
its position which is related to the desired objective function.

Step 3: Crows create new positions in the search space 
as follows: crow i selects one of the flock crows randomly, 
i.e., crow j, and follows it to discover the position of the 
foods hidden by this crow, where the new position of crow i 
is generated as follows:

where ri , aj are random numbers with uniform distribution 
between 0 and 1, APj,t denotes the awareness probability of 
crow j at iteration Iter and f li,t denotes the flight length of 
crow i at iteration Iter . mj,Iter denotes the memory of crow 
j at iteration Iter.

Figure 1 shows the effect of the parameter fl on the 
search capability where the small values of fl(fl ≤ 1) leads 
to explore new position of crow lies on the dashed line 
between mj,t and xi,t as in Fig. 1a, while Fig. 1b shows that, 
if the value of fl is selected more than 1, the new position of 
crow lies on the dashed line which outside the line segment 
between mj,t and xi,t.

(4)

xi,Iter+1 =

{
xi,Iter + ri × f li,Iter (mj,Iter − xi,Iter) aj ≥ APj,t

a random position otherwise

Step 4: After generating the crow’s positions, the new 
positions are evaluated and each crow updates its memory 
as follows:

where f (.) denotes the objective function value, ≻ denotes 
better than.

The nature behavior of crow is characterized by memo-
rizing the position of hidden places of food and retrieving 
it across seasons. In this regard, it is assumed that each 
crow memorizes the position of hidden places in a memory 
denoted by m, thus at iteration Iter, the position of hidden 
place of crow j is denoted by mj,Iter. In the initialize step, the 
memory mj,Iter of crow j is initialized with its initial posi-
tion xj,Iter, then this memory is updated at each iteration by 
Eq. (5) to attain best position of food source (hidden place). 
Equation (5) operates by filling the memory of the crow with 
its new position if it is better that than the sored one.

Step 5: End the algorithm if the maximum number of 
generations is met and the best position of the memory in 
terms of the objective function value is reported as the solu-
tion of the optimization problem; otherwise, go back to Step 
3.

(5)mi,Iter+1 =

{
xi,Iter+1 f (xi,Iter+1) ≻ f (mi,Iter)

mi,Iter otherwise

Fig. 1   Searching mechanism by the crow in the two states: a fl ≤ 1 
and b fl > 1
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3.2 � Rough set theory (RST)

The basic concept of the RST is the indiscernibility rela-
tion, which is generated by the information about the 
objects (Pawlak 1982). Because the discerning knowl-
edge is lack, one cannot identify some objects based on 
the available information. The indiscernibility relation 
expresses this fact by considering granules of indiscern-
ible objects as a fundamental basis. Some relevant con-
cepts of the RST are presented in Pawlak (1982) (i.e., see 
Appendix 1).

4 � The proposed RCSA algorithm

The metaheuristic algorithms have been devised to over-
come the computational drawbacks of existing numerical 
algorithms such as complex derivatives, sensitivity to ini-
tial values and the large amount of enumeration memory 
required. Their conventional procedures for finding the opti-
mal solution are iterative based and depend on randomness 
to imitate natural phenomena. Thus the process for search-
ing the global optimal solution would reveal that some of 
metaheuristic algorithms fail to find a precise value for the 
global optimal solution but they can obtain an approximate 
value or rough sense value. In such situations, it is desir-
able to provide more exploration in finding the global solu-
tion and to prevent premature convergence of the swarm. 
Towards this objective, we focused in this study on the 
hybridization between RSS and CSA. This hybridization 
is called rough crow search algorithm (RCSA). The pro-
posed RCSA operates in two phases: in the first one, CSA 
is implemented as global optimization system to find an 
approximate solution of the global optimization problem. 
In the second phase, RSS is introduced to improve the solu-
tion quality through the roughness of the obtained optimal 
solution so far. By this way, the roughness of the obtained 
optimal solution can be represented as a pair of precise con-
cepts based on the lower and upper approximations which 
are used to constitute the interval of boundary region. After 
that, new solutions are randomly generated inside this region 
to enhance the diversity of solutions and achieve an effective 
exploration to avoid premature convergence of the swarm. 
We start the explanation of the RCSA as follows.

4.1 � Algorithm initialization

Instead of fixing the parameters, the fine-tuning process of 
the algorithm parameters may have major influence in faster 
convergence and final outcome. As a first improvement, 
RCSA introduces a new modification on the flight length 

parameter such that changes dynamically with iteration num-
ber, instead of the fixed value. The second improvement has 
been considered the searching in the opposite directions. 
In addition, RSS is introduced to define the bounds for the 
obtained optimal solution so far and then new solutions are 
generated randomly inside these bounds.

4.2 � Rough CSA

Phase 1: CSA
In CSA, crucial influence on algorithm performance 

refers to the calculation of the hiding places of a crow. Basic 
implementation of this metaheuristic technique assumes a 
fixed value of the flight length which cannot be changed dur-
ing iterations. The main drawback of this technique appears 
in the flight length value that the algorithm needs to cover 
the overall search space for finding the optimal solution. The 
small value of the flight length explores the solutions inside 
the line segment and the large value of the flight length 
explores the solutions outside the line segment. Thus, this is 
often not a good choice, especially when dealing with more 
complex nonlinear and multimodal problems. In order to 
accelerate the convergence, eliminate the drawbacks which 
caused by fixed values of the flight length and balance explo-
ration and exploitation, the flight length is changed dynami-
cally with iteration number as shown in Fig. 2 using the 
following equation (Pan et al. 2014):

where f lIter is the flight length in each iteration, f lmin is the 
minimum flight length, f lmax is the maximum flight length, 
Iter is the iteration number and Itermax is the maximum itera-
tion number.

(6)f lIter = f lmax ⋅ exp

(
log

(
f lmin

f lmax

)
⋅

(
Iter

Itermax

))

 fl

 iter 

 flmin

 flmax

Fig. 2   Representation of fl versus iterations
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In addition, we modified the Eq. (4) so that it involves 
the new positions inside and outside the segment that is 
extended equally on both sides determined by a specified 
value for f lmax.

where d ∈ {1, 2,… ,N} is a randomly chosen index.
To further enhance the intensive search, we force the crows 

to search towards the opposite directions (Seif and Ahmadi 
2015) in the random manner through use the negative sign 
that is inspired by fooling process. Equation (7) presents a new 
modification on the Eq. (4), meanwhile Eq. (7) is introduced 
with the aim of generating a new position of crow and its 
opposite instead of the generating a position only as in Eq. (4). 
In this context, the flight length, f lIter, that is introduced in 
Eq. (7) is evolved by Eq. (6) instead of using fixed value as in 
traditional CSA.

Phase 2: Rough searching scheme (RSS)
However, the optimization producers of the CSA phase 

yields an approximated optimal solution �∗ = (x∗
1
, x∗

2
,… , x∗

n
) 

which is not specified in precise crisp term, rough searching 
scheme-based local search is proposed in this paper to guide 
CSA for approaching the global optimal solution, where the 
approximated optimal solution is converted into rough number. 
Afterwards the rough interval is obtained through the upper 
and lower approximations for each variable. Therefore a new 
offspring is generated inside the obtained rough interval. The 
detailed description of this phase is described as follows:

Step 1: Information system
This step uses the swarm solutions as a key function for 

implementing the information system. The information system 
is denoted as the ordered pair (U,A), where each individual 
is treated as an object (solution) of a non-empty finite set U. 
Attribute set A = {d1, d2,… , dn} is a non-empty finite set of 
attributes (i.e., the dimensions of the candidate problem, where 
each dimension is represented as a conditional attribute).

Step 2: Rough approximations
The ordered pair S = (U,C) is called an approximation 

space generated by C on U, where U is a non-empty finite set 
of solutions per dimension (i.e., obtained solutions from CSA 
phase where each solution is represented as a class) and C is 
a reflexive relation on Uthat partitions U into N classes, i.e., 
U∕C = {{x1}, {x2},… , {xi},… , {xN}}, where {xi} is the ith 
class and the all classes are expressed in increasing ordered 
such that {x1} ≤ {x2} ≤ ⋯ ≤ {xN}. Additionally, {xi} ≤ {xj} 
if and only if xi ≤ xj. For each dimension dj, j = 1, 2,… , n, 
the lower approximation of xi, i = 1, 2,… ,N, is denoted as 
Apr (xi) and can be defined as follows:

(7)�i,Iter+1 =

⎧
⎪⎨⎪⎩

�i,Iter + ri × f li,Iter (mj,Iter − �i,Iter) if aj ≥ APj,Iter

�i,Iter − ri × f li,Iter (mj,Iter − �i,Iter) else d = i

LB + rand × (UB − LB) otherwise

, i = 1, 2,… ,N

The upper approximation Apr (xi) of xi can be defined as 
follows

Accordingly, the boundary region of xi is given by

In classical RST, any subset X ⊆ U is described by its lower 
and upper approximations, i.e., BX ⊆ X ⊆ BX. As a counter-
part when dealing with crisp value, the less than or equal ( ≤ ) 
and the greater than or equal ( ≥ ) are used instead of using the 
subset ( ⊆ ) and superset ( ⊇ ), respectively.

For example, if we have U∕C = {{4}, {5}, {7}}, then the 
lower and upper approximations for each class using Eqs. 8 
and 9 can be obtained as follows:

The Step 2 (i.e., of rough approximations) makes usage of 
the upper and lower approximations to describe the proposed 
process. It is extended from the basics of the rough set theory 
that are described in Sect. 2.3. Hence the obtained solutions for 
ith dimension are represented as the degrees under increasing 
order condition (i.e., x1 < x2 < ⋯ < xN ), then the subset (⊆) 
and superset (⊇) are analogous to the less than or equal (≤) and 
the greater than or equal (≥), respectively. In simple words, for 
a degree, xi, in a set of ordered degrees, the lower approxima-
tion of xi contains all the solutions (degrees) in the information 
system that have values equal to or less than xi. The upper 
approximation of xi contains all the solutions (degrees) in the 
same information system that have values equal to or greater 
than xi; and the boundary region of xi contains all the degrees 
in the information table that have different values from xi.

Step 3: Rough interval
Based on the approximations of a class defined above, the 

so-called rough number can be defined as follows: the degree, 
xi, of the ith dimension can be represented by its rough number 
composed of the lower bound (xLB

i
) and the upper bound (xUB

i
) 

is denoted by RN(xi) . Mathematically,

(8)Apr (xi) = ∪{y ∈ U∕C(y) ≤ xi}.

(9)Apr (xi) = ∪{y ∈ U∕C(y) ≥ xi}.

(10)
BN(xi) = ∪{y ∈ U∕C(y) ≠ xi}

= {y ∈ U∕C(y) > xi} ∪ {y ∈ U∕C(y) < xi}.

Apr(4) = 4 Apr(4) = {4 + 5 + 7} BN(4) = {5, 7}

Apr(5) = {4, 5} Apr(5) = {5, 7} BN(5) = {4, 7}

Apr(7) = {4, 5, 7} Apr(7) = 7 BN(7) = {4, 5}

.
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where NLB is the number of objects contained in the lower 
approximation of xi and NUB is the number of objects con-
tained in the upper approximation of xi.

The interval between the lower bound (xLB
i
) and the upper 

bound (xUB
i
) is known as the rough boundary interval, which 

is denoted as RBI(xi) as follows:

Definition 6  Any vague class is characterized by a so-
called rough number (RN(xi)) consisting of the lower bound 
and the upper bound of the said class as follows:

Remark  According to the above example, the Eqs. 11 and 
12 can be calculated as follows:

By using Eq. (14) we can generate new solutions ran-
domly inside each interval and the unified interval. The 
unified interval of ith dimension is computed as follows.

The rough solution of ith dimension is computed as 
follows:

Briefly, the lower bound of a ith dimension is the mean 
value of the degrees contained in its lower approximations 
whereas the upper bound of a ith dimension is the mean 
value of the degrees contained in its upper approximations. 
The rough boundary interval of a ith dimension is the differ-
ence between its upper and lower bounds, which describes 
the vagueness of the said class. A class with a larger rough 
boundary interval is said to be vague, or less precise.

Therefore, the unified rough intervals or the regions of 
interest for overall dimensions are represented as follows:

Definition 7  The optimal solution is a rough number 
denoted by �∗, whose lower and upper bounds are denoted 
by �UB and �LB, respectively.

Remark 1  If �UB = �LB, then the optimal solution �∗ is exact 
(crisp), otherwise �∗ is inexact (rough).

(11)xLB
i

=
1

NLB

∑
y | y ∈ Apr (xi)

(12)xUB
i

=
1

NUB

∑
y | y ∈ Apr (xi)

(13)RBI(xi) = xUB
i

− xLB
i
.

(14)RN(xi) = [xLB
i
, xUB

i
].

xLB
1

= 4 xUB
1

= 5.33, RN(x1) = [4, 5.33]

xLB
2

= 4.5 xUB
2

= 6, RN(x2) = [4.5, 6]

xLB
3

= 5.33 xUB
3

= 7, RN(x3) = [5.33, 7]

.

(15)xLB
i

= (xLB
i1

+ xLB
i2

+⋯ + xLB
iN
)∕N

(16)xUB
i

= (xUB
i1

+ xUB
i2

+⋯ + xUB
iN
)∕N.

(17)RI(�) = {[xLB
1
, xUB

1
], [xLB

2
, xUB

2
],… , [xLB

n
, xUB

n
]}.

Step 4: Generation
In this step, new solutions are generated inside the new 

intervals randomly, and then these solutions are evolved 
through the use of the RCSA phase.

Step 5: Evaluation
In this step, the solutions are evaluated to judge if the 

best fitness is superior to the previous one, if so, update 
the best fitness value and at this moment, the best location 
is updated.

Step 6: Stopping criterion
This phase is terminated when either the maximum 

number of generations has been produced or the obtained 
optimal solution is exact (crisp). Schematic diagram of the 
rough set phase is demonstrated in Fig. 3.

In summary, the first phase of the proposed, CSA, is 
responsible for delivering a population of solutions for 
the second phase, RSS, where each dimension is repre-
sented by a vector of N-degrees. To effectively create 
a reliable regions in the search space, two concepts are 
introduced, namely rough set approximations and rough 
interval with the aim to achieve a prices optimal solution. 
The rough set approximations consist of lower and upper 
approximations, where the lower approximation for certain 
degree is defined by all degrees that are less or equal this 
degree while the upper approximation for certain degree is 
defined by all degrees that are greater or equal this degree. 
Afterwards, the concept of rough interval in carried out 
based on these approximations, where the rough interval 
is represented by the lower bound and upper bound. The 
lower (upper) bound for any degree is the mean of all 
degrees in its lower (upper) approximation. By the two 
concepts, the search is concentrated in the reliable region 
and therefore this can achieve more accurate solutions as 
well as save the computational time.

Figure 4 shows the general architecture of the proposed 
RCSA algorithm, where the highlighted boxes represent 
the introduced modifications on the original one. Fig-
ure 4 starts with initial positions associated with initial 

Fig. 3   Schematic diagram of rough searching scheme phase
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Formulate the information system (U,A):
U: Finite set of solutions

A: Finite set of dimensions 

Make the partitions of U using the reflexive
relation to obtain U/C

Determine the interval for each class  

Yes

No

No

YesStopping the CSA 
phase?

Apply the new the flight length using Eq.(6)

Generate new ones if the positions do not 
satisfy all constraints 

Evaluate the new positions

Update the memory if the new fitness better 
than the previous one 

Yes No

Start 

Initialize RCSA algorithm parameters

Initialize the position for each crow

Initialize the memory for each crow

Best position from the CSA phase ( ) 

Determine the lower and upper 
approximations for each class using Eqs. (8) 

and (9) respectively

Generate new positions inside the new 
intervals

Evaluate the new positions

Update the best position ( )

Stopping the 
RSS phase?

The optimal solution

Stopping 
condition is 

Generate new positions based on 
opposite direction using Eq.(7)

Fig. 4   Architecture of the proposed RCSA algorithm
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CSA phase

Input: Parameters: N , maxIter , AP , maxfl and minfl . 

Initialize the positions of crows randomly in the search space

Evaluate the initial positions

Initialize the memory of crows with the Initial positions

// Looping 

while maxIter Iter<= do

min
max

max max

.exp log .Iter
fl Iterfl fl
fl Iter

    
=             

for 1i to N=

d = a random integer in the range of [1, ]N

, , , , ,

, 1 , , , ,

( ) if
( ) else , 1,2,...,

.( ) otherwise

i Iter i i Iter j Iter i Iter j j Iter

i Iter i Iter i i Iter j Iter i Iter

x r fl m x a AP
x x r fl m x d i i N

LB rand UB LB
+

+ × − ≥
= − × − = =
 + −

if , 1 ,+ >i Iterx UB then , 1 ,+ =i Iterx UB

if , 1 ,i Iterx LB+ < then , 1+ =i Iterx LB

end for

Evaluate the obtained positions of the crows

Update the memory of crows

End while
* =x Best position from the CSA phase

RSS phase

Formulate the information system

Rank the obtained positions from the CSA phase

Calculate the rough interval for thi dimension as follows
1 2( , ,..., )LB LB LB NLB

i i i ix x x x N=  & 1 2( , ,..., )UB UB UB NUB
i i i ix x x x N=

Repeat

Generate new positions randomly 

for 1i to N=

*

**

.( ) 0.5

.( ) 0.5

LB LB

i UB

rand if rand
rand if rand

 + − ≥′ = 
+ − <

x x x
x

x x x

End for
Evaluate the obtained positions 

Update the best position

Until maxIter Iter=

end Looping 
Output: *x

Fig. 5   The pseudo code of the proposed RCSA algorithm
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memory then the updating mechanism of these positions 
and memory is performed according to Eqs. (7) and (5) 
respectively until the stopping condition of CSA phase is 
satisfied. Afterwards the rough searching scheme (RSS) 
operates until its stopping condition is satisfied where RSS 
receives the solutions from the CSA phase with the aim to 
construct the rough interval by the means of the upper and 
lower approximations for each variable. Therefore a new 
offspring is generated inside the obtained rough interval 
and the best one among CSA and RSS phases is survival. 
Also pseudo code of the proposed RCSA can be summa-
rized as shown in Fig. 5.

5 � Experiments and results

5.1 � Test functions and parameter settings

In this section, the performance of the proposed RCSA 
algorithm is tested on 25 CEC’2005 benchmark functions 
(Suganthan et al. 2005; Sedlaczek and Eberhard 2005). The 
mathematical description these functions, types of functions 
and number of dimensions (Suganthan et al. 2005) are given 
in Table 1. The robustness and effectiveness of the proposed 
RCSA are validated through comparing it with the promi-
nent algorithms from literature. The algorithm is coded in 
MATLAB 7, running on a computer with an Intel Core I 5 
(1.8 GHz) processor and 4 GB RAM memory.

Additionally, the parameter configurations of the RCSA 
and CSA algorithms including population size, the number 
of iterations and awareness probability are based on the sug-
gestions in the corresponding literature (Alireza 2016) while 
the flight length is introduced by a new manner to change 
dynamically [i.e., see Eq. (6)] where the maximum flight 
length is considered as the maximum radius of search and 
minimum flight length is considered as the minimum radius 
(i.e., see Table 2).

5.2 � Performance analysis using the statistical 
measures

To completely evaluate the performance of the proposed 
RCSA algorithm, the comparison between the global solu-
tion and the obtained solution by the RCSA for each test 
function is reported as in Table 3 where in each tested case, 
the solution is demonstrated before and after incorporat-
ing the RSS phase. From the Table 3, we can note that the 
obtained solutions after incorporating the RSS phase are 
more accurate and converge to the optimal value solutions 
than that obtained without incorporating the RSS phase.

As indicated in Table 3, the proposed RCSA algorithm 
gives the exact optimum results for the test functions 1–12 
when the algorithm is implemented with and without RSS 
phase, while RCSA algorithm performs better results than 
the algorithm without RSS phase for the test functions 
13–25.

Beside the comparison with global optimal solution, we 
additionally use the statistical measures (i.e., see Table 4) 
such as best, mean, median and worst objective values 
as well as their standard deviations and average time are 
obtained over 50 independent runs for each test problem.

Table 1   Benchmark functions

C characteristic, U unimodal, M multimodal, D dimension of n

ID Function name D C ID Function name D C

F
1

Shifted Sphere Function 10 U F
9

Shifted Rastrigin’s Function 10 M
F
2

Shifted Schwefel’s Problem 1.2 10 U F
10

Shifted Rotated Rastrigin’s Function 10 M
F
3

Shifted Rotated High Conditioned Elliptic Function 10 U F
11

Shifted Rotated Weierstrass Function 10 M
F
4

Shifted Schwefel’s Problem 1.2 with Noise in Fitness 10 U F
12

Schwefel’s Problem 2.13 10 M
F
5

Schwefel’s Problem 2.6 with Global Optimum on 
Bounds

10 U F
13

Expanded Extended Griewank’s plus Rosenbrock’s 
Function (F8F2)

10 M

F
6

Shifted Rosenbrock’s Function 10 M F
14

Shifted Rotated Expanded Scaffers F6 10 M
F
7

Shifted Rotated Griewank Function without Bounds 10 M F
15
∶F

25
Hybrid functions: where each on has been composed 

from the previous functions (different in each case)
10 M

F
8

Shifted Rotated Ackley’s Function with Global Opti-
mum on Bounds

10 M

Table 2   Parameter settings of RCSA

Population size 50

The number of iterations 500
Awareness probability (AP) 0.1
Maximum flight length (f l

max
) (UB − LB)∕2

Minimum flight length (f l
min

) 10−5

Flight length (fl) Changes dynamically
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Table 3   Comparison between the global solution and RCSA solution without and with RSS phase

Function Global solution The RCSA algo-
rithm without RSS 
phase

The RCSA algo-
rithm with RSS 
phase

Function Global solution The RCSA algo-
rithm without RSS 
phase

The RCSA algo-
rithm with RSS 
phase

F
1

− 450.0000 − 449.5842 − 450.0000 F
14

− 300.0000 − 299.7108 − 299.9610
F
2

− 450.0000 − 450.0000 − 450.0000 F
15

120.0000 120.0000 120.0000
F
3

− 450.0000 − 450.0000 − 450.0000 F
16

120.0000 122.9352 122.9287
F
4

− 450.0000 − 450.0000 − 450.0000 F
17

120.0000 128.0572 121.0399
F
5

− 310.0000 − 309.9890 − 310.0000 F
18

10.0000 300.0409 300.0342
F
6

390.0000 390.0000 390.0000 F
19

10.0000 300.1341 300.1185
F
7

− 180.0000 − 179.9994 − 180.0000 F
20

10.0000 300.3235 300.3200
F
8

− 140.0000 − 139.99952 − 140.0000 F
21

360.0000 500.0374 500.0278
F
9

− 330.0000 − 330.0000 − 330.0000 F
22

360.0000 700.8376 532.1342
F
10

− 330.0000 − 330.0000 − 330.0000 F
23

360.0000 463.0758 463.0758
F
11

90.0000 90.0000 90.0000 F
24

260.0000 293.7459 265.4191
F
12

− 460.0000 − 460.0000 − 460.0000 F
25

260.0000 394.8046 375.7108
F
13

− 130.0000 − 129.6139 − 129.9901

Table 4   Statistical results 
of RCSA for the overall test 
functions

Function Best Mean Median Worst SD Ave. time (s)

F
1

− 450.0000 − 449.9974 − 450.0000 − 449.9574 8.1340E−3 0.6928095
F
2

− 450.0000 − 450.0000 − 450.0000 − 449.99912 1.69680E−4 0.8602075
F
3

− 450.0000 − 449.8758 − 449.9964 − 448.2176 3.6265E−1 1.7043
F
4

− 450.0000 − 450.0000 − 450.0000 − 450.0000 1.5951E−5 0.9525
F
5

− 310.0000 − 309.9935 − 309.8324 − 306.2820 8.2210E−1 1.7133
F
6

390.0000 − 399.4495 − 389.1946 − 384.1468 1.4290 0.9599
F
7

− 180.0000 − 180.0000 − 180.0000 − 179.9279 1.4658E−2 0.8569
F
8

− 140.0000 − 140.0000 − 140.0000 − 139.9978 4.2917E−4 0.5137
F
9

− 330.0000 − 330.0000 − 330.0000 − 330.0000 0.0000 0.5671
F
10

− 330.0000 − 330.0000 − 330.0000 − 330.0000 0.0000 0.8693
F
11

90.0000 90.0000 90.0000 90.0000 0.0000 0.5613
F
12

− 460.0000 − 460.0000 − 460.0000 − 460.0000 0.0000 0.6504
F
13

− 129.9901 − 129.7794 − 129.7607 − 129.6294 8.9215E−2 0.7215
F
14

− 299.9610 − 299.9289 − 299.9461 − 299.8408 3.9559E−2 1.2306
F
15

120.0000 120.0000 120.0000 120.0000 0.0000 0.9582
F
16

122.9287 122.9287 122.9287 122.9287 2.9032E−14 0.9965
F
17

121.0399 121.1665 121.0399 128.1268 9.4701E−1 1.1208
F
18

300.0342 300.0423 300.0423 300.1388 1.9347E−2 0.8273
F
19

300.1185 300.1185 300.1185 300.1185 0.0000 0.6134
F
20

300.3200 300.3209 300.32008 300.3235 1.7073E−3 1.2885
F
21

500.0278 5017.2094 500.0707 5039.4986 2.0850 1.8769
F
22

532.1342 580.0254 532.1342 651.8622 60.7131 1.8652
F
23

463.0758 463.0758 463.0758 463.0758 6.9618E−014 0.6875
F
24

265.4191 269.8181 265.4191 298.5889 10.5783 0.9856
F
25

375.7108 383.7492 384.0652 391.2666 1.9513 1.5698
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Table 5   Comparison of RCSA with other recent algorithms (best results are given in bold)

Function PSO IPOP-CMA-ES CHC SSGA SS-BLX SS-Arit DE-Bin DE-Exp SaDE Proposed RCSA

F
1

1.234E−4 0.000 2.464 8.420E−9 3.402E+1 1.064 7.716E−9 8.260E−9 8.416E−9 0.000
Rank 6 Rank 1 Rank 8 Rank 5 Rank 9 Rank 7 Rank 2 Rank 3 Rank 4 Rank 1

F
2

2.595E−2 0.000 1.180E−2 8.719E−5 1.730 5.282 8.342E−9 8.181E−9 8.208E−9 0.000
Rank 7 Rank 1 Rank 6 Rank 5 Rank 8 Rank 9 Rank 4 Rank 2 Rank 3 Rank 1

F
3

5.174E+4 0.000 2.699E+5 7.948E+4 1.844E+5 2.535E+5 4.233E+1 9.935E+1 6.560E++3 0.000
Rank 5 Rank 1 Rank 9 Rank 6 Rank 7 Rank 8 Rank 2 Rank 3 Rank 4 Rank 1

F
4

2.488 2.932E+3 9.190E+1 2.585E−3 6.228 5.755 7.686E−9 8.350E−9 8.087E−9 0.000
Rank 6 Rank 10 Rank 9 Rank 5 Rank 8 Rank 7 Rank 2 Rank 4 Rank 3 Rank 1

F
5

4.095E+2 8.104E−10 2.641E+2 1.343E+2 2.185 1.443E+1 8.608E−9 8.514E−9 8.640E−9 0.000
Rank 10 Rank 2 Rank 9 Rank 8 Rank 7 Rank 6 Rank 4 Rank 3 Rank 5 Rank 1

F
6

7.310E+2 0.000 1.416E+6 6.171 1.145E+2 4.945E+2 7.956E−9 8.391E−9 1.612E−2 0.000
Rank 8 Rank 1 Rank 9 Rank 5 Rank 6 Rank 7 Rank 2 Rank 3 Rank 4 Rank 1

F
7

2.678E+1 1.267E+3 1.269E+3 1.271E+3 1.966E+3 1.908E+3 1.266E+3 1.265E+3 1.263E+3 0.000
Rank 2 Rank 6 Rank 7 Rank 8 Rank 10 Rank 9 Rank 5 Rank 4 Rank 3 Rank 1

F
8

2.043E+1 2.001E+1 2.034E+1 2.037E+1 2.035E+1 2.036E+1 2.033E+1 2.038E+1 2.032E+1 0.000
Rank 10 Rank 2 Rank 5 Rank 8 Rank 6 Rank 7 Rank 4 Rank 9 Rank 3 Rank 1

F
9

1.438E+1 2.841E+1 5.886 7.286E−9 4.195 5.960 4.546 8.151E−9 8.330E−9 0.000
Rank 9 Rank 10 Rank 7 Rank 2 Rank 5 Rank 8 Rank 6 Rank 3 Rank 4 Rank 1

F
10

1.404E+1 2.327E+1 7.123 1.712E+1 1.239E+1 2.179E+1 1.228E+1 1.118E+1 1.548E+1 0.000
Rank 6 Rank 10 Rank 2 Rank 8 Rank 5 Rank 9 Rank 4 Rank 3 Rank 7 Rank 1

F
11

5.590 1.343 1.599 3.255 2.929 2.858 2.434 2.067 6.796 0.000
Rank 9 Rank 2 Rank 3 Rank 8 Rank 7 Rank 6 Rank 5 Rank 4 Rank 10 Rank 1

F
12

6.362E+2 2.127E+2 7.062E+2 2.794E+2 1.506E+2 2.411E+2 1.061E+2 6.309E+1 5.634E+1 0.000
Rank 9 Rank 6 Rank 10 Rank 8 Rank 5 Rank 7 Rank 4 Rank 3 Rank 2 Rank 1

F
13

1.503 1.134 8.297E+1 6.713E+1 3.245E+1 5.479E+1 1.573 6.403E+1 7.070E+1 0.0099
Rank 3 Rank 2 Rank 10 Rank 8 Rank 5 Rank 6 Rank 4 Rank 7 Rank 9 Rank 1

F
14

3.304 3.775 2.073 2.264 2.796 2.970 3.073 3.158 3.415 0.0390
Rank 8 Rank 10 Rank 2 Rank 3 Rank 4 Rank 5 Rank 6 Rank 7 Rank 9 Rank 1

F
15

3.398E+2 1.934E+2 2.751E+2 2.920E+2 1.136E+2 1.288E+2 3.722E+2 2.940E+2 8.423E+1 0.000
Rank 9 Rank 5 Rank 6 Rank 7 Rank 3 Rank 4 Rank 10 Rank 8 Rank 2 Rank 1

F
16

1.333E+2 1.170E+2 9.729E+1 1.053E+2 1.041E+2 1.134E+2 1.117E+2 1.125E+2 1.227E+2 2.9287
Rank 10 Rank 8 Rank 2 Rank 4 Rank 3 Rank 7 Rank 5 Rank 6 Rank 9 Rank 1

F
17

1.497E+2 3.389E+2 1.045E+2 1.185E+2 1.183E+2 1.279E+2 1.421E+2 1.312E+2 1.387E+2 1.0399
Rank 9 Rank 10 Rank 2 Rank 4 Rank 3 Rank 5 Rank 8 Rank 6 Rank 7 Rank 1

F
18

8.512E+2 5.570E+2 8.799E+2 8.063E+2 7.668E+2 6.578E+2 5.097E+2 4.482E+2 5.320E+2 2.9003E+2
Rank 9 Rank 5 Rank 10 Rank 8 Rank 7 Rank 6 Rank 3 Rank 2 Rank 4 Rank 1

F
19

8.497E+2 5.292E+2 8.798E+2 8.899E+2 7.555E+2 7.010E+2 5.012E+2 4.341E+2 5.195E+2 2.9011E+2
Rank 8 Rank 5 Rank 9 Rank 10 Rank 7 Rank 6 Rank 3 Rank 2 Rank 4 Rank 1

F
20

8.509E+2 5.264E+2 8.960E+2 8.893E+2 7.463E+2 6.411E+2 4.928E+2 4.188E+2 4.767E+2 2.9032E+2
Rank 8 Rank 5 Rank 10 Rank 9 Rank 7 Rank 6 Rank 4 Rank 2 Rank 3 Rank 1

F
21

9.138E+2 4.420E+2 8.158E+2 8.522E+2 4.851E+2 5.005E+2 5.240E+2 5.420E+2 5.140E+2 1.4002E+2
Rank 10 Rank 2 Rank 8 Rank 9 Rank 3 Rank 4 Rank 6 Rank 7 Rank 5 Rank 1

F
22

8.071E+2 7.647E+2 7.742E+2 7.519E+2 6.828E+2 6.941E+2 7.715E+2 7.720E+2 7.655E+2 1.7213E+2
Rank 10 Rank 5 Rank 9 Rank 4 Rank 2 Rank 3 Rank 7 Rank 8 Rank 6 Rank 1

F
23

1.028E+3 8.539E+2 1.075E+3 1.004E+3 5.740E+2 5.828E+2 6.337E+2 5.824E+2 6.509E+2 1.0307E+2
Rank 9 Rank 7 Rank 10 Rank 8 Rank 2 Rank 4 Rank 5 Rank 3 Rank 6 Rank 1

F
24

4.120E+2 6.101E+2 2.959E+2 2.360E+2 2.513E+2 2.011E+2 2.060E+2 2.020E+2 2.000E+2 0.5419E+1
Rank 9 Rank 10 Rank 8 Rank 6 Rank 7 Rank 3 Rank 5 Rank 4 Rank 2 Rank 1
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6 � Results and comparisons

In addition to the above measures and results, the proposed 
RCSA algorithm is compared with recently developed state-
of-the-art methods such as PSO (Kennedy and Eberhart 
1995), IPOP-CMA-ES (Auger and Hansen 2005), CHC 
(Eshelman 1991; Eshelman and Schaffer 1993), SSGA (Fer-
nandes and Rosa 2001; Mülenbein and Schlierkamp-Voosen 
1993), SS-BLX (Herrera et al. 2006), SS-Arit (Laguna and 
Marti 2003), DE-Bin (Price et al. 2005) and SaDE (Qin and 
Suganthan 2005) as in Table 5. The comparisons indicate 
that the RCSA outperforms all other algorithms in terms of 
the average error except for the F24.

Furthermore, the rank of the average error for different 
algorithms of each test function is reported, where the 
best value for the test function takes rank 1, worst value 
takes rank 10 and the other values are ranked between 1 
and 10. As indicated from Table 5, we can say that the 
proposed RCSA algorithm surpasses all other algorithms 
on average.

Beside the use of the statistical measures for algorithm 
validations such as comparison of the proposed RCSA algo-
rithm with other recent algorithms in terms of calculating 
the average error as well as calculations of best, mean and 
median results, we additionally apply saving of the fitness, 
Sfitness, in case of incorporating the RSS phase and without 
it. Sfitness is calculated as follows:

where FORSS , FO are the optimal objective value with and 
without RSS phase, respectively.

Table 6 demonstrates that there are a significant sav-
ing for the functions F17 , F22 , F24 , F25 and slight saving for 
the functions F1 , F5 , F7 , F8 , F13 , F14 , F16 , F18−F21 . So, we 
conclude that the incorporating of the RSS phase improves 
the performance of the proposed RCSA algorithm through 
achieving a significant reduction in the optimal objective 
value as 44.5173% compared to the proposed approach with-
out RSS phase.

In this subsection, a comparative study has been car-
ried out to evaluate the performance of the proposed RCSA 
algorithm concerning the hybridization, closeness to optimal 
solution and computational time. On one hand, pure algo-
rithms suffer from reaching an optimal solution in a rea-
sonable time. Also, the sinking into premature convergence 
may be occurs in some of pure algorithms. Consequently, 
our hybridization algorithm has twofold features; avoiding 
the premature convergence and enclosing the optimum solu-
tion through using RSS phase by the means of the lower 
and upper approximations. On the other hand, the proposed 
RCSA algorithm is highly competitive when comparing it 
with the other methods in terms of the statistical measures. 
So the use of the hybrid approach has a great potential for 
solving global optimization problems.

(18)Sfitness =
FO − FORSS

FO
× 100

Table 5   (continued)

Function PSO IPOP-CMA-ES CHC SSGA SS-BLX SS-Arit DE-Bin DE-Exp SaDE Proposed RCSA

F
25

5.099E+2 1.818E+3 1.764E+3 1.747E+3 1.794E+3 1.804E+3 1.744E+3 1.742E+3 1.738E+3 1.1571E+2
Rank 2 Rank 10 Rank 7 Rank 6 Rank 8 Rank 9 Rank 5 Rank 4 Rank 3 Rank 1

Table 6   Saving of fitness for the CEC 2005 test problems

Function Saving rate % Function Saving rate %

F
1

0.092485 F
14

0.08348
F
2

0 F
15

0
F
3

0 F
16

0.005287
F
4

0 F
17

5.479817
F
5

0.003549 F
18

0.002233
F
6

0 F
19

0.005198
F
7

0.000333 F
20

0.001165
F
8

0.000343 F
21

0.00192
F
9

0 F
22

24.07168
F
10

0 F
23

0
F
11

0 F
24

9.643301
F
12

0 F
25

4.836266
F
13

0.290247

Table 7   Wilcoxon test for comparison results in Table 5

Compared methods Solution evaluations

Algorithm 1 Algorithm 2 R− R+ ρ-value Best method

RCSA PSO 276 0 0.000027 RCSA
RCSA IPOP-CMA-ES 210 0 0.000089 RCSA
RCSA CHC 300 0 0.000018 RCSA
RCSA SSGA 231 0 0.000060 RCSA
RCSA SS-BLX 325 0 0.000012 RCSA
RCSA SS-Arit 325 0 0.000012 RCSA
RCSA DE-Bin 210 0 0.000089 RCSA
RCSA DE-Exp 190 0 0.000132 RCSA
RCSA SaDE 190 0 0.000132 RCSA



	 A. E. Hassanien et al.

1 3

6.1 � Performance assessment

This section is devoted to assess the performance of the pro-
posed algorithm using the Wilcoxon signed ranks test. The 
Wilcoxon signed ranks test is a nonparametric procedure 
used in a hypothesis testing situation involving a design with 
two samples (Joaquín et al. 2001). It is a pair-wise test that 
aims to detect significant differences between the behaviors 
of two methods. It is associated with ρ-value, where ρ is the 
probability of the null hypothesis being true. The result of 
the test is returned in ρ < 0.05 indicates a rejection of the null 
hypothesis, while ρ > 0.05 indicates a failure to reject the 
null hypothesis. The R+ is the sum of positive ranks, while 
R− is the sum of negative ranks. In Table 7, we present the 
results of the Wilcoxon signed-rank test for RCSA compared 
against PSO, IPOP-CMA-ES, CHC, SSGA, SS-BLX, SS-
Arit, DE-Bin, DE-Exp and SaDE. We can conclude from 
Table 7 that the proposed RCSA is a significant algorithm 
and it is better than the other algorithms.

6.2 � Large‑scale test functions

To assess the performance of the proposed algorithm, we 
apply the proposed algorithm on a large-scale test functions 
for 1000 dimension. The large-scale test functions were pro-
posed in the IEEE CEC 2010 (Tang et al. 2009) and also 
used in IEEE CEC 2012. Due to space limitation, the pro-
posed algorithm is tested on five test functions of the IEEE 
CEC 2010.

In the other hand the proposed algorithm is compared 
with seven different algorithms, where the results of the 
seven comparative algorithms are taken from Gaoji et al. 
(2016). The selected compared algorithms are defined as 
follows: joint operations algorithm (JOA) (Gaoji et al. 2016), 
free search (FS) (Penev 2014), social- based algorithm 
(SBA) (Ramezani and Lotfi 2013), particle swarm optimizer 
with a diversity enhancing mechanism and neighborhood 
search strategies (DNSPSO) (Hui et al. 2013), dynamic 
multi-swarm particle swarm optimizer with a cooperative 
learning strategy (D-PSO-C) (Xu et al. 2015), dynamic 
group-based differential evolution (GDE) (Han et al. 2013) 
and sinusoidal differential evolution (SinDE) (Draa et al. 
2015).

The results for large-scale test functions are reported in 
Table 8, where the best, worst, mean and standard devia-
tion (Std.) are reported over 20 runs. From Table 8, it can 
be noted that RCSA outperforms the other algorithm in the 
view of statistical measures.

6.3 � Engineering design problems

This section is devoted to validate the proposed RCSA for 
solving engineering design problems. Since these design 
problems involve different constraints, so the penalty func-
tion method is employed (Coello Coello 2002). By employ-
ing the penalty method, the constrained optimization prob-
lem can be converted to an unconstrained one and then the 
proposed RCSA algorithm can be implemented.

Table 8   Comparison among 
different algorithms on CEC 
2010 functions

Fun. Metric FS SBA DNSPSO D-PSO-C GDE SinDE JOA RCSA

f
1

Best 1.04E9 2.13E6 7.24E5 2.19E5 5.71E5 6.88E−7 1.54E−21 4.0389E−7
Worst 1.58E9 2.80E6 9.37E6 1.02E6 1.86E7 3.16E−1 4.87E−17 3.1648E−5
Mean 1.28eE9 2.43E6 3.18E6 6.12E5 5.07E6 2.18E−2 3.45E−19 1.0374E−5
Std. 8.44E7 1.92E5 2.69E6 1.88E5 5.18E6 8.14E−2 1.26E−18 1.2513E−5

f
2

Best 9.02E3 7.92E3 6.01E3 1.26E3 6.45E3 1.20E3 7.51E2 4.7726E−4
Worst 1.38E4 8.99E3 6.85E3 2.14E3 7.20E3 1.41E3 9.63E2 1.6704
Mean 1.01E4 8.26E3 6.46E3 1.68E3 6.93E3 1.31E3 8.42E2 0.3580
Std. 3.42E2 1.86E2 1.67E2 2.40E2 2.32E2 7.16E1 6.62E1 7.345E1

f
3

Best 2.06E1 1.90E1 1.83E1 1.14E1 1.93E1 2.25E0 2.16E0 7.5E−3
Worst 2.11E1 1.96E1 1.95E1 1.59E1 2.02E1 2.76E0 2.72E0 3.42E−2
Mean 2.09E1 1.95E1 1.93E1 1.33E1 1.96E1 2.48E0 2.47E0 1.85E−2
Std. 1.94E−2 4.36E−2 1.30E−1 1.30E0 2.52E−1 3.43E−1 3.16E−1 1.19E−2

f
4

Best 1.48E12 2.08E11 9.76E11 3.72E12 7.60E11 1.18E12 1.41E11 8.3322E10
Worst 2.69E12 6.10E11 8.99E12 1.96E13 1.82E12 3.25E12 3.23E11 5.6982E11
Mean 2.04E12 3.71E11 2.46E12 8.16E12 1.34E12 1.71E12 2.45E11 3.1231E11
Std. 2.85E11 1.12E11 2.02E12 5.19E12 3.32E11 6.29E11 7.58E10 1.4524E11

f
5

Best 9.15E7 2.74E8 1.49E8 5.21E7 7.36E7 4.08E7 3.88E7 1.2018E3
Worst 1.46E8 4.03E8 3.99E8 3.51E8 2.02E8 6.67E7 6.87E7 6.3036E3
Mean 1.11E8 3.32E8 2.63E8 2.95E8 1.26E8 5.44E7 4.85E7 4.5977E3
Std. 1.42E7 4.43E7 5.82E7 9.70E7 4.03E7 7.43E6 1.17E7 2.9409E3
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6.3.1 � Himmelblau’s design problem

The Himmelblau design problem was originally proposed by 
Himmelblau (1972) and it has been considered as a bench-
mark non-linear constrained optimization problem. On the 
other hand many authors have been tested another varia-
tion of this problem (named as version II) (Omran and Sal-
man 2009), where a parameter 0.0006262 has been taken as 
0.00026 (typeset bold in the constraint g1 ). These problems 
can be formally defined as follows:

Version I:

Version II:

(19)

MinF(�) = 5.3578547x2
3
+ 0.8356891x1x5 + 37.293239x1 − 40792.141

subject to∶

g1(�) = 85.334407 + 0.0056858x2x5 + �.�������x1x4 − 0.002205x3x5

g2(�) = 80.51249 + 0.0071317x2x5 + 0.0029955x1x2 + 0.0021813x2
3

g3(�) = 9.300961 + 0.0047026x3x5 + 0.0012547x1x3 + 0.00190853x3x4

0 ≤ g1(�) ≤ 92, 90 ≤ g2(�) ≤ 110, 20 ≤ g3(�) ≤ 25,

78 ≤ x1 ≤ 102, 33 ≤ x2 ≤ 45, 27 ≤ xi ≤ 45, i = 3, 4, 5.

(20)

MinF(�) = 5.3578547x2
3
+ 0.8356891x1x5 + 37.293239x1 − 40792.141

subject to∶

g1(�) = 85.334407 + 0.0056858x2x5 + �.�����x1x4 − 0.002205x3x5

g2(�) = 80.51249 + 0.0071317x2x5 + 0.0029955x1x2 + 0.0021813x2
3

g3(�) = 9.300961 + 0.0047026x3x5 + 0.0012547x1x3 + 0.00190853x3x4

0 ≤ g1(�) ≤ 92, 90 ≤ g2(�) ≤ 110, 20 ≤ g3(�) ≤ 25,

78 ≤ x1 ≤ 102, 33 ≤ x2 ≤ 45, 27 ≤ xi ≤ 45, i = 3, 4, 5.

The proposed RCSA algorithm has been tested on both 
the versions of this problem through finding the best, 
median, mean and worst values. Further the proposed 
RCSA algorithm is compared with prominent different 
algorithms that reported in Deb (2000), He et al. (2004), 
Lee and Geem (2005), Dimopoulos (2007), Gandomi et al. 
(2013) and Mehta and Dasgupta (2012) for the first version 
and Omran and Salman (2009), Coello (2000), Fesanghary 
et al. (2008) and Hu et al. (2003) for the second version as 
in Table 9. Table 9 presents the statistical results for the 
two versions in terms of finding the values of best, median, 

Table 9   Statistical results for the Himmelblau’s problem

NA not available

Version Methods Best Median Mean Worst Std.

I Deb (2000) − 30,665.537 − 30,665.535 NA − 29,846.654 NA
He et al. (2004) − 30,665.539 NA − 30,643.989 NA 70.043
Lee and Geem (2005) − 30,665.500 NA NA NA NA
Dimopoulos (2007) − 30,665.54 NA NA NA NA
Gandomi et al. (2013) − 30,665.2327 NA NA NA 11.6231
Mehta and Dasgupta (2012) − 30,665.538741 NA NA NA NA
Proposed RCSA − 30,665.545314 − 30,665.545314 − 30,665.544377 − 30,665.542970 0.001283

II Omran and Salman (2009) − 31,025.55626 NA − 31,025.556264 NA NA
Coello (2000) − 31,020.859 − 31,017.21369 − 30,984.240703 − 30,792.407737 73.633536
Fesanghary et al. (2008) − 31,024.3166 NA NA NA NA
Hu et al. (2003) − 31,025.56142 NA − 31,025.561420 NA 0
Proposed RCSA − 31,025.568575 − 31,025.568512 − 31,025.559812 − 31,025.507752 0.018780
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mean, worst and the standard deviation (Std.) obtained 
by 30 runs, where the optimal solution for the version 
I is � = [78.000122 33.000129 29.995023 44.999358 36.776087] 
and the objective function value is − 30,665.545314. On 
the other hand the optimal solution for the version II is 
� = [78.000094 33.000075 27.070838 44.999957 44.969327] with 
the objective function value is − 31,025.568575. Based on 
the depicted comparisons in Table 9, we can see that the 
proposed RCSA algorithm outperforms the other methods, 
where it gives better solutions for the two versions than 
the other algorithms.

Figure 6 illustrates the convergence curves for the best 
objective value obtained by the proposed RCSA algorithm 
for the two versions of the Himmelblau design problem. It 
can be seen the convergence curve rapidly convergent to 

(a) version I (b) version II
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Fig. 6   Convergence curves for the Himmelblau’s design problem

Fig. 7   Ranking of the best solutions for the Himmelblau’s design problem

Fig. 8   Architecture of three-bar truss design problem
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the optimal solution in less than 300 iterations for version 
I and less than 200 iterations for version II.

Figure 7 provides the ranks for the different algorithms, 
where the best value takes the order one; the second best 
takes the order two; and so on. As shown from Fig. 7, we 
can see that the proposed RCSA algorithm gives the better 
rank over all other algorithms.

6.3.2 � Three‑bar truss design problem

The three-bar truss design problem is to minimize the vol-
ume of a statistically loaded three-bar truss as the objective 
function and subject to stress ( � ) constraints on each of the 
truss members by adjusting cross sectional areas ( x1 and x2 ). 
The schematic of three-bar truss design problem is depicted 
in Fig. 8. This optimization problem is defined as follows:

The results of the proposed algorithm are obtained 
for three-bar truss design problem. The proposed 
RCSA yields the optimal solution and constraints 
value as follow: � = [0.7886751333,0.4082482940] and 
g(�) = [0, − 1.4641016110, − 0.5358983889] . In addition, 
the comparisons between the proposed RCSA algorithm 
and other different algorithms (i.e., PSO-DE; Hui et al. 

(21)

MinF(�) = (2
√
2x1 + x2) × l

subject to:

g1(�) =

√
2x1 + x2√

2x2
1
+ 2x1x2

P − � ≤ 0

g2(�) =

√
2x1 + x2√

2x2
1
+ 2x1x2

P − � ≤ 0

g3(�) =

√
2x1 + x2√

2x2
1
+ 2x1x2

P − � ≤ 0

0 ≤ x1, x2 ≤ 1, l = 100 cm,P = 2 kN/cm2, � = 2 kN/cm2.

Table 10   Comparison between the proposed RCSA and different algorithms for three-bar truss design problem

Algorithm Best Mean Median Worst SD

Proposed RCSA 263.895843376 263.895843377 263.895843378 263.895843378 8.0468107E−010
Hui et al. (2010) 263.89584338 263.89584338 NA 263.89584338 4.5E−10
Ray and Liew (2003) 263.89584654 263.90335672 NA 263.96975638 1.3E−02
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Fig. 9   Convergence behavior of the RCSA of three-bar truss design 
problem

Fig. 10   Ranking of the optimum solutions for the three-bar truss 
design problem Fig. 11   Architecture of pressure vessel design problem
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2010; Ray and Liew 2003) are presented in Table  10. 
Table 10 demonstrates that the proposed algorithm out-
perform the other algorithms in terms of quality of the 
obtained solution, where the better solution among all 

algorithm is highlighted in boldface. Therefore, it can be 
concluded that the proposed RCSA algorithm is a good 
alternative algorithm for design problems. Further, the 
convergence behavior of the RCSA for obtaining the best 

Table 11   Statistical results of 
different methods for pressure 
vessel

NA not available

Method Best Mean Worst SD Median

Sandgren (1988) 8129.1036 N/A N/A N/A NA
Kannan and Kramer (1994) 7198.0428 N/A N/A N/A NA
Deb and Gene (1997) 6410.3811 N/A N/A N/A NA
Coello (2000) 6288.7445 6293.8432 6308.1497 7.4133 NA
Coello and Montes (2002) 6059.9463 6177.2533 6469.3220 130.9297 NA
He and Wang (2007) 6061.0777 6147.1332 6363.8041 86.4545 NA
Montes and Coello (2008) 6059.7456 6850.0049 7332.8798 426.0000 NA
Kaveh and Talatahari (2010) 6059.7258 6081.7812 6150.1289 67.2418 NA
Kaveh and Talatahari (2009) 6059.0925 6075.2567 6135.3336 41.6825 NA
Gandomi et al. (2013) 6059.714 6447.7360 6495.3470 502.693 NA
Cagnina et al. (2008) 6059.714335 6092.0498 NA 12.1725 NA
Coello Coello et al. (2010) 6059.7208 6440.3786 7544.4925 448.4711 6257.5943
He et al. (2004) 6059.7143 6289.92881 NA 305.78 NA
Akay and Karaboga (2012) 6059.714339 6245.308144 NA 205 NA
Garg (2014) 5885.403282 5887.557024 5895.126804 2.745290 5886.14928
Proposed RCSA 6059.606944 6059.844857 6061.034418 0.0582763 6059.606944

Table 12   The optimal design 
variables with their objective 
values

NA not available

Method x
1

x
2

x
3

x
4

F(�)

Sandgren (1988) 1.125000 0.625000 47.700000 117.701000 8129.1036
Kannan and Kramer (1994) 1.125000 0.625000 58.291000 43.690000 7198.0428
Deb and Gene (1997) 0.937500 0.500000 48.329000 112.67900 6410.3811
Coello (2000) 0.812500 0.437500 40.323900 200.000000 6288.7445
Coello and Montes (2002) 0.812500 0.437500 42.097398 176.654050 6059.946
He and Wang 2007 0.812500 0.437500 42.091266 176.746500 6061.0777
Montes and Coello (2008) 0.812500 0.437500 42.098087 176.640518 6059.7456
Kaveh and Talatahari (2010) 0.812500 0.437500 42.103566 176.573220 6059.0925
Kaveh and Talatahari (2009) 0.812500 0.437500 42.098353 176.637751 6059.7258
Zhang and Wang (1993) 1.125000 0.625000 58.290000 43.6930000 7197.7000
Cagnina et al. (2008) 0.812500 0.437500 42.098445 176.6365950 6059.714335
Coello Coello et al. (2010) 0.812500 0.437500 42.098400 176.6372000 6059.7208
He et al. (2004) 0.812500 0.437500 42.098445 176.6365950 6059.7143
Lee and Geem (2005) 1.125000 0.625000 58.278900 43.75490000 7198.433
Montes et al. (2007) 0.812500 0.437500 42.098446 176.6360470 6059.701660
Hu et al. (2003) 0.812500 0.437500 42.098450 176.6366000 6059.7151717976
Gandomi et al. (2013) 0.812500 0.437500 42.0984456 176.6365958 6059.7143348
Akay and Karaboga (2012) 0.812500 0.437500 42.098446 176.636596 6059.714339
Garg (2014) 0.7781977 0.3846656 40.3210545 199.9802367 5885.4032828
Proposed RCSA 0.812500 0.437500 42.100204 176.614800 6059.606944
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objective value of the three-bar truss design problem is 
illustrated in Fig. 9. We can see that the proposed algo-
rithm converges rapidly to the optimal solution in less than 
40 iterations.

Beside these results, it can see that the proposed RCSA 
provides the better result than all other algorithms and then 
its result comes in the first rank, while PSO-DE provides 
the second best solution as the second rank result, then 
Ray and Liew comes in third rank. In general, the results 
of these algorithms are depicted according these ranks 
in Fig. 10. Figure 10 illustrates that the proposed RCSA 
algorithm finds the better rank over all other algorithms.

6.3.3 � Pressure vessel design problem

The goal of the pressure vessel design is to minimize the 
total cost (i.e., the cost of material, forming and welding) 
(Sandgren 1988) of a cylindrical vessel that is capped at both 
ends by hemi-spherical heads as shown in Fig. 11. Using 
rolled steel plate, the shell is made in two halves that are 
joined by two longitudinal welds to form a cylinder. There 
are four design variable associated with it, namely the thick-
ness of the pressure vessel, Ts = x1, thickness of the head, 
Th = x2, inner radius of the vessel, R = x3, and length of the 
vessel without heads, L = x4, i.e., the variable vectors are 
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Fig. 12   Convergence behavior of the pressure vessel design problem

Fig. 13   Ranking of the opti-
mum solutions for the pressure 
vessel design problem

Fig. 14   Schematic of the speed 
reducer design problem
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given (in inches) by � = (Ts, Th,R, Ls) = (x1, x2, x3, x4). Then, 
the problem is formulated mathematically as follows:

The opt imal  so lu t ion  obta ined by imple-
men t ing  t he  p roposed  RCSA a lgo r i t hm i s 
� = (0.8125 0.437500 42.100204 176.614800) with cor-
responding function value equal to f (�) = 6059.606944 
and in addition the constraints are calculated (i.e., 
[g

1
g
2
g
3
g
4
] = [3.394885E − 5 − 0.037548 − 0.000278

−63.385199] ). Table 11 outlines the statistical results of the 

(22)

Min F(�) = 0.6224x1x3x4 + 1.7781x2x
2
3
+ 3.1661x2

1
x4 + 19.84x2

1
x3

subjec to:

g1(�) = −x1 + 0.0193x3 ≤ 0,

g2(�) = −x3 + 0.00954x3 ≤ 0,

g3(�) = −�x2
3
x4 −

4

3
�x3

3
+ 1, 296, 000 ≤ 0,

g4(�) = x4 − 240 ≤ 0,

1 × 0.0625 ≤ x1, x2 ≤ 99 × 0.0625, 10 ≤ x3, x4 ≤ 99 × 200.

proposed RCSA algorithm in terms of obtaining the best, 
mean, worst, std. and median over 30 run. Moreover these 
results are compared with other algorithms (Sandgren 1988; 
Kannan and Kramer 1994; Deb and Gene 1997; Coello and 
Montes 2002; He and Wang 2007; Montes and Coello 2008; 
Kaveh and Talatahari 2010, 2009; Cagnina et al. 2008; Coe-
lho 2010; Akay and Karaboga 2012; Garg 2014; Zhang and 
Wang 1993; Montes et al. 2007). Table 11 shows that the 
proposed RCSA algorithm outperforms the other optimiza-
tion algorithms. Although the produced solution by Garg 
(2014) is better than the proposed RCSA algorithm, the solu-
tion of design variables are violated with the design vari-
ables restrictions (i.e., x1 is discrete).

Table 12 provides the comparisons between the proposed 
RCSA algorithm and other algorithms in terms of finding the 
optimal design variables with their corresponding function 
value. We can see that the produced solution of the design 
variables by Garg (2014) are violated with the design vari-
ables restrictions. However, the proposed RCSA algorithm 
provides better objective function than those provided by 
the literature. Table 12 indicates that the proposed RCSA 
algorithm is more robust than the other methods.

The convergence curve of the proposed RCSA algorithm 
for the pressure vessel design problem is provided Fig. 12. 
The convergence behavior indicates that the proposed 

Table 13   Comparing of the 
speed reducer design problem 
results of RCSAwith other 
algorithms

Algorithm Best Mean Median Worst SD

Proposed RCSA 2994.381855 2994.381855 2994.381855 2994.381855 0.0000
Hui et al. (2010) 2996.348167 2996.348174 NA 2996.348204 6.4E−06
Ray and Liew (2003) 2994.744241 3001.758264 NA 3009.964736 4.0E+00
Rao and Xiong (2005) 3000.959715 NA NA NA NA
Cagnina et al. (2008) 2996.347849 NA NA NA NA
Tosserams et al. (2007) 2996.645783 NA NA NA NA
Lu and Kim (2010) 3019.583365 NA NA NA NA
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Fig. 15   Convergence behavior of the speed reducer design problem

Fig. 16   Ranking of the optimum solutions for the speed reducer 
design problem
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RCSA algorithm finds the optimal solution in less than 150 
iterations.

From Fig. 13, we see that the proposed RCSA algo-
rithm takes the order three, but Garg (2014) and Kaveh 
and Talatahari (2009) take the order one and two respec-
tively. On the hand, the Garg (2014) violates the bound 
restriction for the variable x1 and Kaveh and Talatahari 
(2009) provides the value of constraint as g1 = 9.9E−5 
which is greater than that provides by the proposed RCSA 
algorithm. Consequently, the proposed RCSA algorithm 
is still better for this problem.

6.3.4 � Speed reducer design problem

The main goal of the speed reducer design problem is to 
minimize the total weight of the speed reducer while satisfy-
ing some constraints. This design problem has a rather dif-
ficult to detect feasible space as reported in Golinski (1973), 
where the constraints include limitations on the bending 
stress of gear teeth, surface stress, transverse deflections 
of shafts 1 and 2 due to transmitted force, and stresses in 
shafts 1 and 2. Figure 14 shows the schematic shape of the 
speed reducer design problem in which seven unknown of 
design variables is showed, where the design of the speed 
reducer is considered by the face width, b = x1 , module of 
teeth, m = x2 , number of teeth on pinion, z = x3 , length of 
shaft 1 between bearings, l1 = x4 , length of shaft 2 between 
bearings, l2 = x5 , diameter of shaft 1, d1 = x6 , and diam-
eter of shaft 2 d2 = x7 i.e., the variable vectors are given by 
� = (b,m, z, l1, l2, d1, d2) = (x1, x2, x3, x4, x5, x6, x7) . Then, the 
problem is formulated mathematically as follows:

(23)

Min F(�) = 0.7854x1x
2
2
(3.3333x2

3
+ 14.9334x3 − 43.0934)

− 1.508x1(x
2
6
+ x2

7
) + 7.4777(x3

6
+ x3

7
)

+ 0.7854(x4x
2
6
+ x5x

2
7
)

subjec to:

g1(�) =
27

x1x
2
2
x3

− 1 ≤ 0,

g2(�) =
397.5

x1x
2
2
x2
3

− 1 ≤ 0,

g3(�) =
1.93x3

4

x2x3x
4
6

− 1 ≤ 0,

g4(�) =
1.93x3

5

x2x3x
4
7

− 1 ≤ 0,

g5(�) =

√(
745x4

x2x3

)2

+ 16.9(106)

110x3
6

− 1 ≤ 0,

g6(�) =

√(
745x5

x2x3

)2

+ 157.5(106)

85x3
7

− 1 ≤ 0,

g7(�) =
x2x3

40
− 1 ≤ 0,

g8(�) =
5x2

x1
− 1 ≤ 0,

g9(�) =
x1

12x2
− 1 ≤ 0,

g10(�) =
1.5x

6
+ 1.9

x4
− 1 ≤ 0,

g10(�) =
1.1x

7
+ 1.9

x5
− 1 ≤ 0,

2.6 ≤ x1 ≤ 3.6, 0.7 ≤ x2 ≤ 0.8, 17 ≤ x3 ≤ 28,

7.3 ≤ x4, x5 ≤ 8.3, 2.9 ≤ x6 ≤ 3.9, 5 ≤ x7 ≤ 5.5.

Fig. 17   Definitions regarding 
rough set approximations
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The best objective value obtained by pro-
posed  RCSA a lgor i thm i s  F(�) = 2994.381855 
and the optimal solution of the design variables are 
� = (3.500006 0.700001 17.000000 7.300562 7.715339 3

.350260 5.286657) . Table  13 provides the best solution 
obtained by RCSA for speed reducer design problem over 
30 independent runs, where the comparison of the statistical 
results obtained by RCSA and other algorithms is are shown. 
As we can see, the results show that the proposed RCSA 
algorithm produces promising results in comparison with the 
other methods of the speed reducer design problem in terms 
of obtaining the best, mean, median and the worst. In addition 
the minimal value of standard deviation (Std.) denotes the high 
robustness of RCSA. From Fig. 15 demonstrates the conver-
gence behavior of the proposed RCSA algorithm where it finds 
the optimal solution in less than 200 iterations. On the other 
hand Fig. 16 provides the comparisons of ranks for different 
algorithms, where the proposed algorithm gives the better rank 
thus it outperforms the other algorithms.

7 � Conclusions

We concluded that the integrated RCSA has improved 
the quality of the found solutions and also guaranteed the 
faster converge to the optimal solution. In the RCSA, CSA 
phase is presented in the first stage to provide the initial 
optimal solution of the optimization problem while the 
RSS phase is introduced as a second stage to enhance the 
exploitation search. However the flight length of the tradi-
tional CSA is fixed, it may produce unsatisfactory solution. 
So a dynamic flight length behavior is introduced with 
the aim of eliciting values from the interval [f lmin, f lmax] 
to enhance the exploration process. The proposed RCSA 
algorithm is investigated on 30 benchmark problems of 
IEEE CEC 2005, IEEE CEC 2010 and 4 engineering 
design problems. The obtained results by RCSA are com-
pared with different algorithms from the literature. The 
simulations showed that the incorporation of RSS provides 
an important modification on the CSA. In comparison with 
the classical CSA and other algorithms from the litera-
ture, it seems that the RCSA performed significantly well. 
The superior results of RCSA on the benchmark problems 
and engineering design problems showed its applicability 
for complex real-world problems. The main reason of the 
superior performance of RCSA lies behind the RSS which 
helps in breaking new promising regions by the means of 
the lower and upper approximations and thus it can refine 
the convergence rate of the algorithm and avoid the suck-
ing in the local optima. Therefore, we can conclude that 
the proposed RCSA can handle engineering optimization 
problems efficiently and effectively.

The future work will be focused on applying the meth-
odology of RCSA to solve the multi-objective problems, 
mixed-type problems, and discrete optimization problems 
in smart and complex applications (Abdelaziz et al. 2018; 
Darwish et al. 2017; Elhoseny et al. 2018b, c; Sajjad et al. 
2017; Shehab et al. 2018).

Appendix 1: Rough set theory definitions

Definition A.1  (Information system) An information system 
(IS) is denoted as a triplet T = (U,A, f ) , where U is a non-
empty finite set of objects and A is a non-empty finite set of 
attributes. An information function f  maps an object to its 
attribute, i.e., fa ∶ U → Va for every a ∈ A , where Va is the 
value set of attribute a . A posteriori knowledge (denoted by 
d ) is expressed by one distinguished attribute. A decision 
system is an IS with the form DT = (U,A ∪ {d}, f ) , where 
d ∉ A is used as supervised learning. The elements of A are 
called conditional attributes.

Definition A.2  (Indiscernibility) For an attr ib-
ute set B ⊆ A , the equivalence relation induced 
by B is called a B-indiscernibility relation, i.e., 
INDT(B) =

{
(x, y) ∈ U2 |∀ a ∈ B, fa(x) = fa(y)

}
 . The equiv-

alence classes of the B-indiscernibility relation are denoted 
as IB(x).

Definition A.3  (Set approximation) Let X ⊆ U and B ⊆ A in 
an IS, the B-lower approximation of X is the set of objects that 
belongs to X with certainty, i.e., BX =

{
x ∈ U | IB(x) ⊆ X

}
 . 

The B-upper is the set of objects that possibly belongs to X , 
where B̄X =

{
x ∈ U | IB(x) ∩ X ≠ 𝜙

}
.

Definition A.4  (Reducts) If X1
DT
,X2

DT
,… ,Xr

DT
 are the deci-

sion classes of DT , the set POSB(d) = BX1 ∪ BX2 ∪⋯ ∪ BXr 
is the B-positive region of DT  . A subset B ⊆ A is a set of 
relative reducts of DT  if and only if POSB(d) = POSC(d) 
and POSB−{b}(d) ≠ POSC(d), ∀b ∈ B . In the same way, 
POSB(X) , BNB(X) and NEGB(X) are defined below (see 
Fig. 17).

•	 POSB(X) = BX ⇒ certainly member of X
•	 NEGB(X) = U − B̄X ⇒ certainly non member of X
•	 BNB(X) = B̄X − BX ⇒ possibly member of X.
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